Wybrane wzory i stałe fizykochemiczne na egzamin maturalny z biologii, chemii i fizyki

\[E = \frac{\Delta U}{F} \]

\[T = \frac{2\pi}{\omega} \]

\[B = \mu_0 \mu_r \cdot I \]

\[\Delta \Phi = \oint \mathbf{B} \cdot d\mathbf{l} \]

\[\Delta t = \frac{1}{\omega} \]

\[\mathbf{v} = \mathbf{H} \cdot \mathbf{r} \]

\[\mathbf{E}_{\text{kin}} = \frac{1}{2} \mathbf{I} \cdot \omega^2 \]

\[J = m \cdot v \cdot r \cdot \sin \theta \]

\[\mathbf{H}_{\text{N}} = -\mathbf{I} \cdot \mathbf{H}_2 \]

\[\mathbf{B} = \mathbf{H} + \mathbf{J} \]

\[\mathbf{v} = \mathbf{J} \times \mathbf{r} \]

\[\mathbf{E} = -\nabla \Phi - \mathbf{J} \times \mathbf{B} \]

\[\mathbf{H} = \nabla \times \mathbf{E} + \frac{\partial \mathbf{D}}{\partial t} \]

\[\mathbf{D} = \varepsilon \mathbf{E} \]

\[\mathbf{B} = \mu_0 \mathbf{H} + \mathbf{J} \]

\[\mathbf{E} = -\nabla \Phi - \mathbf{J} \times \mathbf{B} \]

\[\mathbf{F} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B} \]

\[\mathbf{F}_{\text{kin}} = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2 \]

\[\mathbf{F}_{\text{pot}} = -\mathbf{E} \cdot \mathbf{D} - \mathbf{J} \cdot \mathbf{H} \]

\[\mathbf{F}_{\text{tot}} = \mathbf{F}_{\text{kin}} + \mathbf{F}_{\text{pot}} \]

\[\mathbf{F}_{\text{ext}} = \mathbf{F}_{\text{tot}} + \mathbf{F}_{\text{int}} \]

\[\mathbf{E}_{\text{field}} = \frac{1}{4\pi} \mathbf{J} \]

\[\mathbf{H}_{\text{field}} = \frac{1}{4\pi} \mathbf{M} \]

\[\mathbf{D}_{\text{field}} = \varepsilon_{\text{const}} \mathbf{E}_{\text{field}} \]

\[\mathbf{B}_{\text{field}} = \mu_{\text{const}} \mathbf{H}_{\text{field}} \]

\[\mathbf{F}_{\text{int}} = \int \mathbf{E}_{\text{field}} \cdot d\mathbf{A} - \int \mathbf{B}_{\text{field}} \cdot d\mathbf{l} \]

\[\mathbf{E}_{\text{ind}} = -\nabla \mathbf{B}_{\text{field}} \times \mathbf{B}_{\text{field}} \]

\[\mathbf{H}_{\text{ind}} = \nabla \times \mathbf{E}_{\text{field}} \]

\[\mathbf{F}_{\text{ind}} = \mathbf{E}_{\text{ind}} \cdot \mathbf{J} + \mathbf{H}_{\text{ind}} \times \mathbf{E}_{\text{field}} \]

\[\mathbf{F}_{\text{tot}} = \mathbf{F}_{\text{kin}} + \mathbf{F}_{\text{pot}} + \mathbf{F}_{\text{ext}} + \mathbf{F}_{\text{int}} + \mathbf{F}_{\text{ind}} \]

\[\mathbf{E}_{\text{tot}} = \mathbf{E}_{\text{kin}} + \mathbf{E}_{\text{pot}} + \mathbf{E}_{\text{ext}} + \mathbf{E}_{\text{int}} + \mathbf{E}_{\text{ind}} \]

\[\mathbf{H}_{\text{tot}} = \mathbf{H}_{\text{kin}} + \mathbf{H}_{\text{pot}} + \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{int}} + \mathbf{H}_{\text{ind}} \]

\[\mathbf{F}_{\text{tot}} = \mathbf{F}_{\text{kin}} + \mathbf{F}_{\text{pot}} + \mathbf{F}_{\text{ext}} + \mathbf{F}_{\text{int}} + \mathbf{F}_{\text{ind}} \]

\[\mathbf{E}_{\text{tot}} = \mathbf{E}_{\text{kin}} + \mathbf{E}_{\text{pot}} + \mathbf{E}_{\text{ext}} + \mathbf{E}_{\text{int}} + \mathbf{E}_{\text{ind}} \]

\[\mathbf{H}_{\text{tot}} = \mathbf{H}_{\text{kin}} + \mathbf{H}_{\text{pot}} + \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{int}} + \mathbf{H}_{\text{ind}} \]
Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.
<table>
<thead>
<tr>
<th>Spis treści</th>
<th>Kolumna 1</th>
<th>Kolumna 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zasady azotowe</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2. Wybrane kwasy organiczne</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3. Kod genetyczny</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4. Potencjał wody w komórce roślinnej</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5. Równanie Hardy’ego-Weinberga</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6. Wybrane aminokwasy białkowe</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7. Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8. Stałe dysocjacji wybranych kwasów w roztworach wodnych w temperaturze 25 °C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9. Stałe dysocjacji wybranych zasad w roztworach wodnych w temperaturze 25 °C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>10. Szereg elektrochemiczny wybranych metali</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11. Układ okresowy pierwiastków</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12. Kinematyka</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>13. Dynamika</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>14. Siła ciężkości, siła sprężystości i siła tarcia</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>15. Drgania i fale</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16. Optyka</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>17. Termodynamika</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>18. Pole magnetyczne</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>19. Fizyka współczesna</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>20. Elektrostatyka</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>21. Prąd elektryczny</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>22. Logarytmy</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>23. Równania kwadratowe</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>24. Przedrostki</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>25. Stałe i jednostki fizyczne i chemiczne</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>26. Wybrane zagadnienia z trygonometrii i wartości logarytmów dziesiętnych</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Zasady azotowe

pirymidynowe

\[
\text{cytozyna (C)} \quad \text{tymina (T)} \quad \text{uracyl (U)}
\]

purynowe

\[
\text{adenina (A)} \quad \text{guanina (G)}
\]

Potencjał wody w komórce roślinnej

\[
\Psi_W = \Psi_S + \Psi_P
\]

\(\Psi_S\) – potencjał wody

\(\Psi_P\) – potencjał osmotyczny

\(\Psi_C\) – potencjał ciśnienia

Równanie Hardy’ego-Weinberga

\[p + q = 1\]

\[(p + q)^2 = p^2 + 2pq + q^2 = 1\]

gdzie:

\(p\) – częstość allelu dominującego w populacji,

\(q\) – częstość allelu recesywnego w populacji.

Wybrane kwasy organiczne

<table>
<thead>
<tr>
<th>Kwasy organiczne</th>
<th>Formuła</th>
<th>Struktura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwas mlekowy</td>
<td>(\text{CH}_3\text{--COOH})</td>
<td>(\text{CH}_3\text{--COOH})</td>
</tr>
<tr>
<td>Kwas pirogronowy</td>
<td>(\text{HO--CH--COOH})</td>
<td>(\text{HO--CH--COOH})</td>
</tr>
<tr>
<td>Kwas jabłkowy</td>
<td>(\text{HO--C--COOH})</td>
<td>(\text{HO--C--COOH})</td>
</tr>
<tr>
<td>Kwas cytrynowy</td>
<td>(\text{CH}_2\text{--COOH})</td>
<td>(\text{CH}_2\text{--COOH})</td>
</tr>
</tbody>
</table>

Kod genetyczny

<table>
<thead>
<tr>
<th>Pierwszy nukleotyd</th>
<th>Drugi nukleotyd</th>
<th>Trzeci nukleotyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>UU</td>
<td>UCU seryna</td>
<td>UAU tyrozyna</td>
</tr>
<tr>
<td>UUC</td>
<td>UCC seryna</td>
<td>UAC tyrozyna</td>
</tr>
<tr>
<td>UUA</td>
<td>UCA seryna</td>
<td>UAA STOP</td>
</tr>
<tr>
<td>UUG</td>
<td>UCG seryna</td>
<td>UAG STOP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUU</td>
<td>CCU prolina</td>
<td>CAU histidyyna</td>
</tr>
<tr>
<td>CUC</td>
<td>CCC prolina</td>
<td>CAC histidyyna</td>
</tr>
<tr>
<td>CUA</td>
<td>CCA prolina</td>
<td>CAA glutamina</td>
</tr>
<tr>
<td>CUG</td>
<td>CCG prolina</td>
<td>CAG glutamina</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUU</td>
<td>ACU treonina</td>
<td>AUA asparagina</td>
</tr>
<tr>
<td>AUC</td>
<td>ACC treonina</td>
<td>AAC asparagina</td>
</tr>
<tr>
<td>AUA</td>
<td>ACA treonina</td>
<td>AAA lizyna</td>
</tr>
<tr>
<td>AUG metionina, START</td>
<td>ACG treonina</td>
<td>AAG lizyna</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUU</td>
<td>GCU alanina</td>
<td>GAU kw asparaginowy</td>
</tr>
<tr>
<td>GUC</td>
<td>GCC alanina</td>
<td>GAC kw asparaginowy</td>
</tr>
<tr>
<td>GUA</td>
<td>GCA alanina</td>
<td>GAA kw glutaminowy</td>
</tr>
<tr>
<td>GUG</td>
<td>GCG alanina</td>
<td>GAG kw glutaminowy</td>
</tr>
</tbody>
</table>

1
<table>
<thead>
<tr>
<th>Nazwa aminokwasu</th>
<th>Wzór</th>
<th>Kod</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicyna</td>
<td>H$_2$N—CH$_2$—COOH</td>
<td>Gly</td>
<td>6,06</td>
</tr>
<tr>
<td>Alanina</td>
<td>H$_2$N—CH—COOH</td>
<td>Ala</td>
<td>6,11</td>
</tr>
<tr>
<td>Cysteina</td>
<td>H$_2$N—CH—COOH</td>
<td>Cys</td>
<td>5,05</td>
</tr>
<tr>
<td>Seryna</td>
<td>H$_2$N—CH—COOH</td>
<td>Ser</td>
<td>5,68</td>
</tr>
<tr>
<td>Walina</td>
<td>H$_2$N—CH—COOH</td>
<td>Val</td>
<td>6,00</td>
</tr>
<tr>
<td>Fenyloalanina</td>
<td>H$_2$N—CH—COOH</td>
<td>Phe</td>
<td>5,48</td>
</tr>
<tr>
<td>Kwas asparaginowy</td>
<td>H$_2$N—CH—COOH</td>
<td>Asp</td>
<td>2,85</td>
</tr>
<tr>
<td>Kwas glutaminowy</td>
<td>H$_2$N—CH—COOH</td>
<td>Glu</td>
<td>3,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nazwa aminokwasu</th>
<th>Wzór</th>
<th>Kod</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lizyna</td>
<td>H$_2$N—CH—COOH</td>
<td>Lys</td>
<td>9,60</td>
</tr>
<tr>
<td>Tyrozyna</td>
<td>H$_2$N—CH—COOH</td>
<td>Tyr</td>
<td>5,64</td>
</tr>
<tr>
<td>Glutamina</td>
<td>H$_2$N—CH—COOH</td>
<td>Gln</td>
<td>5,65</td>
</tr>
<tr>
<td>Asparagina</td>
<td>H$_2$N—CH—COOH</td>
<td>Asn</td>
<td>5,51</td>
</tr>
<tr>
<td>Leucyna</td>
<td>H$_2$N—CH—COOH</td>
<td>Leu</td>
<td>6,01</td>
</tr>
<tr>
<td>Isoleucyna</td>
<td>H$_2$N—CH—COOH</td>
<td>Ile</td>
<td>6,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nazwa aminokwasu</th>
<th>Wzór</th>
<th>Kod</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metionina</td>
<td>H$_2$N—CH—COOH</td>
<td>Met</td>
<td>5,74</td>
</tr>
<tr>
<td>Treonina</td>
<td>H$_2$N—CH—COOH</td>
<td>Thr</td>
<td>5,60</td>
</tr>
<tr>
<td>Prolina</td>
<td>HN—COOH</td>
<td>Pro</td>
<td>6,30</td>
</tr>
<tr>
<td>Histydyna</td>
<td>H$_2$N—CH—COOH</td>
<td>His</td>
<td>7,60</td>
</tr>
<tr>
<td>Tryptofan</td>
<td>H$_2$N—CH—COOH</td>
<td>Trp</td>
<td>5,89</td>
</tr>
<tr>
<td>Arginina</td>
<td>H$_2$N—CH—COOH</td>
<td>Arg</td>
<td>10,76</td>
</tr>
</tbody>
</table>

Rozpuszczalność soli i wodorotlenków w wodzie w temperaturze 25 °C

<table>
<thead>
<tr>
<th></th>
<th>Cl<sup>-</sup></th>
<th>Br<sup>-</sup></th>
<th>I<sup>-</sup></th>
<th>NO<sub>3</sub><sup>-</sup></th>
<th>CH<sub>3</sub>COO<sup>-</sup></th>
<th>S<sup>2-</sup></th>
<th>SO<sub>3</sub>²⁻</th>
<th>SO<sub>4</sub>²⁻</th>
<th>CO<sub>3</sub>²⁻</th>
<th>SiO<sub>3</sub>²⁻</th>
<th>CrO<sub>4</sub>²⁻</th>
<th>PO<sub>4</sub>³⁻</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>R</td>
</tr>
<tr>
<td>K⁺</td>
<td>R</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>R</td>
<td>—</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Cu<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>—</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>—</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ag⁺</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mg<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ca<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>T</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>Ba<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Zn<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>T</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>T</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Al<sup>3+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>—</td>
<td>—</td>
<td>R</td>
<td>—</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sn<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>—</td>
<td>R</td>
<td>—</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Pb<sup>2+</sup></td>
<td>T</td>
<td>T</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mn<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Fe<sup>2+</sup></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>—</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Fe<sup>3+</sup></td>
<td>R</td>
<td>R</td>
<td>—</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>—</td>
<td>R</td>
<td>—</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

R – substancja rozpuszczalna; T – substancja trudno rozpuszczalna (strąca się ze stęż. roztworów); N – substancja nierozpuszczalna; — oznacza, że dana substancja albo rozkłada się w wodzie, albo nie została otrzymana.

Stałe dysocjacji wybranych kwasów w roztworach wodnych w temperaturze 25 °C*

<table>
<thead>
<tr>
<th>Kwas nieorganiczny</th>
<th>Stała dysocjacji K_a lub K_{al}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>$6,3 \times 10^{-4}$</td>
</tr>
<tr>
<td>HCl</td>
<td>$1,0 \times 10^{-7}$</td>
</tr>
<tr>
<td>HBr</td>
<td>$3,0 \times 10^{-9}$</td>
</tr>
<tr>
<td>HI</td>
<td>$1,0 \times 10^{-10}$</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>$1,0 \times 10^{-7}$</td>
</tr>
<tr>
<td>H$_2$Se</td>
<td>$1,9 \times 10^{-4}$</td>
</tr>
<tr>
<td>H$_2$Te</td>
<td>$2,5 \times 10^{-3}$</td>
</tr>
<tr>
<td>HClO</td>
<td>$5,0 \times 10^{-8}$</td>
</tr>
<tr>
<td>HClO$_2$</td>
<td>$1,1 \times 10^{-2}$</td>
</tr>
<tr>
<td>HClO$_3$</td>
<td>$5,0 \times 10^{-2}$</td>
</tr>
<tr>
<td>HNO$_2$</td>
<td>$5,1 \times 10^{-4}$</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>$27,5$</td>
</tr>
<tr>
<td>H$_2$SO$_3$</td>
<td>$1,5 \times 10^{-2}$</td>
</tr>
<tr>
<td>H$_2$BO$_3$</td>
<td>$5,8 \times 10^{-10}$</td>
</tr>
<tr>
<td>H$_3$AsO$_3$</td>
<td>$5,9 \times 10^{-10}$</td>
</tr>
<tr>
<td>H$_3$AsO$_4$</td>
<td>$6,5 \times 10^{-3}$</td>
</tr>
<tr>
<td>H$_3$PO$_4$</td>
<td>$6,9 \times 10^{-3}$</td>
</tr>
<tr>
<td>H$_2$SiO$_4$</td>
<td>$3,2 \times 10^{-10}$</td>
</tr>
<tr>
<td>H$_2$CO$_3$</td>
<td>$4,5 \times 10^{-7}$</td>
</tr>
</tbody>
</table>

Kwas organiczny

<table>
<thead>
<tr>
<th>Kwas organiczny</th>
<th>Stała dysocjacji K_a $(t = 20 ^\circ C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCOOH</td>
<td>$1,8 \times 10^{-4}$ $(t = 20 ^\circ C)$</td>
</tr>
<tr>
<td>CH$_3$COOH</td>
<td>$1,8 \times 10^{-5}$</td>
</tr>
<tr>
<td>CH$_3$CH$_2$COOH</td>
<td>$1,4 \times 10^{-5}$</td>
</tr>
<tr>
<td>C$_6$H$_5$COOH</td>
<td>$6,5 \times 10^{-5}$</td>
</tr>
<tr>
<td>C$_6$H$_5$OH</td>
<td>$1,3 \times 10^{-10}$ $(t = 20 ^\circ C)$</td>
</tr>
</tbody>
</table>

* Jeśli w tabeli nie zaznaczono inaczej

Szereg elektrochemiczny wybranych metali

<table>
<thead>
<tr>
<th>Półogniwo</th>
<th>E°, V</th>
<th>Półogniwo</th>
<th>E°, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Li$^+$</td>
<td>$-3,04$</td>
<td>Ni/Ni$^{2+}$</td>
<td>$-0,26$</td>
</tr>
<tr>
<td>Ca/Ca$^{2+}$</td>
<td>$-2,84$</td>
<td>Sn/Sn$^{2+}$</td>
<td>$-0,14$</td>
</tr>
<tr>
<td>Mg/Mg$^{2+}$</td>
<td>$-2,36$</td>
<td>Pb/Pb$^{2+}$</td>
<td>$-0,13$</td>
</tr>
<tr>
<td>Al/Al$^{3+}$</td>
<td>$-1,68$</td>
<td>Fe/Fe$^{3+}$</td>
<td>$-0,04$</td>
</tr>
<tr>
<td>Mn/Mn$^{2+}$</td>
<td>$-1,18$</td>
<td>H$_2$/H$^+$</td>
<td>$0,00$</td>
</tr>
<tr>
<td>Zn/Zn$^{2+}$</td>
<td>$-0,76$</td>
<td>Bi/Bi$^{3+}$</td>
<td>$+0,31$</td>
</tr>
<tr>
<td>Cr/Cr$^{3+}$</td>
<td>$-0,74$</td>
<td>Cu/Cu$^{2+}$</td>
<td>$+0,34$</td>
</tr>
<tr>
<td>Fe/Fe$^{2+}$</td>
<td>$-0,44$</td>
<td>Ag/Ag$^+$</td>
<td>$+0,80$</td>
</tr>
<tr>
<td>Cd/Cd$^{2+}$</td>
<td>$-0,40$</td>
<td>Hg/Hg$^{2+}$</td>
<td>$+0,85$</td>
</tr>
<tr>
<td>Co/Co$^{2+}$</td>
<td>$-0,28$</td>
<td>Au/Au$^{3+}$</td>
<td>$+1,50$</td>
</tr>
</tbody>
</table>

Stałe dysocjacji wybranych zasad w roztworach wodnych w temperaturze 25 °C

<table>
<thead>
<tr>
<th>Zasada</th>
<th>Stała dysocjacji K_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_3$</td>
<td>$1,8 \times 10^{-5}$</td>
</tr>
<tr>
<td>CH$_3$NH$_2$</td>
<td>$4,3 \times 10^{-4}$</td>
</tr>
<tr>
<td>CH$_3$CH$_2$NH$_2$</td>
<td>$5,0 \times 10^{-4}$</td>
</tr>
<tr>
<td>CH$_3$CH$_2$CH$_2$NH$_2$</td>
<td>$4,0 \times 10^{-4}$</td>
</tr>
<tr>
<td>(CH$_3$)$_2$NH</td>
<td>$7,4 \times 10^{-4}$</td>
</tr>
<tr>
<td>(CH$_3$)$_3$N</td>
<td>$7,4 \times 10^{-5}$</td>
</tr>
<tr>
<td>C$_6$H$_5$NH$_2$</td>
<td>$4,3 \times 10^{-10}$</td>
</tr>
</tbody>
</table>

Układ okresowy pierwiastków

<table>
<thead>
<tr>
<th>Liczba atomowa</th>
<th>Symbol chemiczny pierwiastka</th>
<th>Wodór</th>
<th>Masa atomowa, u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1,01</td>
<td>1,01</td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>6,94</td>
<td>6,91</td>
</tr>
<tr>
<td>3</td>
<td>Be</td>
<td>9,01</td>
<td>9,01</td>
</tr>
<tr>
<td>4</td>
<td>Na</td>
<td>23,00</td>
<td>23,01</td>
</tr>
<tr>
<td>5</td>
<td>Mg</td>
<td>24,31</td>
<td>24,31</td>
</tr>
<tr>
<td>10</td>
<td>K</td>
<td>39,10</td>
<td>39,09</td>
</tr>
<tr>
<td>11</td>
<td>Rb</td>
<td>85,47</td>
<td>85,47</td>
</tr>
<tr>
<td>12</td>
<td>Sr</td>
<td>87,62</td>
<td>87,62</td>
</tr>
<tr>
<td>13</td>
<td>Cs</td>
<td>137,33</td>
<td>137,33</td>
</tr>
<tr>
<td>15</td>
<td>Ac</td>
<td>223,02</td>
<td>223,07</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>39,95</td>
<td>39,95</td>
</tr>
</tbody>
</table>

***)

<table>
<thead>
<tr>
<th>Liczba atomowa</th>
<th>Symbol chemiczny pierwiastka</th>
<th>Wodór</th>
<th>Masa atomowa, u</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Ce</td>
<td>140,12</td>
<td>140,12</td>
</tr>
</tbody>
</table>

)

<table>
<thead>
<tr>
<th>Liczba atomowa</th>
<th>Symbol chemiczny pierwiastka</th>
<th>Wodór</th>
<th>Masa atomowa, u</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>U</td>
<td>238,03</td>
<td>238,03</td>
</tr>
<tr>
<td>93</td>
<td>Np</td>
<td>237,05</td>
<td>237,05</td>
</tr>
<tr>
<td>94</td>
<td>Pu</td>
<td>244,06</td>
<td>244,06</td>
</tr>
<tr>
<td>95</td>
<td>Am</td>
<td>243,06</td>
<td>243,06</td>
</tr>
<tr>
<td>96</td>
<td>Cm</td>
<td>247,07</td>
<td>247,07</td>
</tr>
<tr>
<td>97</td>
<td>Bk</td>
<td>247,07</td>
<td>247,07</td>
</tr>
<tr>
<td>98</td>
<td>Cf</td>
<td>251,08</td>
<td>251,08</td>
</tr>
<tr>
<td>99</td>
<td>Es</td>
<td>252,09</td>
<td>252,09</td>
</tr>
</tbody>
</table>

Kinematyka

<table>
<thead>
<tr>
<th>Pęd</th>
<th>(p = m \cdot \dot{v})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>II zasada dynamiki</th>
<th>(\frac{\Delta p}{\Delta t} = \vec{F} ; \frac{\Delta v}{\Delta t} = \vec{a})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Moment siły</th>
<th>(M = F \cdot r \cdot \sin \alpha (\vec{r} ; \vec{F}))</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Moment bezwładności</th>
<th>(I = \sum_{i=1}^{n} m_i r_i^2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Moment pędu punktu materialnego</th>
<th>(J = m \cdot v \cdot r \cdot \sin \alpha (\vec{r} ; \vec{v}))</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Moment pędu bryły sztywnej</th>
<th>(J = I \cdot \omega)</th>
</tr>
</thead>
</table>

Dynamika

Siła ciężkości, siła sprężystości i siła tarcia

<table>
<thead>
<tr>
<th>Prawo powszechnego ciążenia</th>
<th>(F_g = G \frac{m_1 \cdot m_2}{r^2})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Natężenie pola grawitacyjnego</th>
<th>(\gamma = \frac{\vec{F}}{m})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Energia potencjalna grawitacji</th>
<th>(E_p = G \frac{m_1 \cdot m_2}{r})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zmiana energii potencjalnej grawitacji na małych wysokościach</th>
<th>(\Delta E_p = m \cdot g \cdot \Delta h)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prędkości kosmiczne (dla Ziemi)</th>
<th>(v_1 = \sqrt{\frac{G \cdot M_z}{R_z}} = 7,9 \text{ km/s}) (v_2 = \sqrt{\frac{2 \cdot G \cdot M_z}{R_z}} = 11,2 \text{ km/s})</th>
</tr>
</thead>
</table>

III prawo Keplera

| \(\frac{T_1^2}{R_1^3} = \frac{T_2^2}{R_2^3} = \text{const} \) |
| --- | --- |

<table>
<thead>
<tr>
<th>Prawo sprężystości</th>
<th>(\vec{F}_s = -k \cdot \vec{x})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Energia potencjalna sprężystości</th>
<th>(E_{pot} = \frac{1}{2} k \cdot x^2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Siła tarcia kinetycznego</th>
<th>(T_k = \mu_k \cdot F_N)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Siła tarcia statycznego</th>
<th>(T_k \leq \mu_s \cdot F_N)</th>
</tr>
</thead>
</table>

Drgania i fale

<table>
<thead>
<tr>
<th>Ruch harmoniczny</th>
<th>(x(t) = A \cdot \sin(\omega t + \varphi))</th>
</tr>
</thead>
</table>

| \(v(t) = A \cdot \omega \cdot \cos(\omega t + \varphi) \) |
| --- | --- |

| \(a(t) = -A \cdot \omega^2 \cdot \sin(\omega t + \varphi) \) |
| --- | --- |

<table>
<thead>
<tr>
<th>Okres drgań masy na sprężynie i wahadła matematycznego</th>
<th>(T = 2\pi \sqrt{\frac{m}{k}}) ; (T = 2\pi \sqrt{\frac{I}{g}})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Częstotliwość i długość fali</th>
<th>(f = \frac{1}{T}) ; (\lambda = v \cdot T)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Załamanie fali</th>
<th>(\sin \alpha = \frac{v_1}{v_2} = \frac{n_2}{n_1})</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Siatka dyfrakcyjna</th>
<th>(n \cdot \lambda = d \cdot \sin \alpha)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Efekt Dopplera</th>
<th>(f = f_r \frac{v}{v \pm u_r})</th>
</tr>
</thead>
</table>
Optyka

<table>
<thead>
<tr>
<th>Kąt graniczny</th>
<th>(\sin \alpha_{gr} = \frac{1}{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kąt Brewstera</td>
<td></td>
</tr>
<tr>
<td>(\tan \alpha_B = n)</td>
<td></td>
</tr>
<tr>
<td>Równanie soczewki, zwierciadła</td>
<td>(\frac{1}{f} = \frac{1}{x} + \frac{1}{y})</td>
</tr>
<tr>
<td>Soczewka</td>
<td>(\frac{1}{f} = \left(\frac{n_{soc}}{n_{ośc}} - 1 \right) \left(\frac{1}{R_1} + \frac{1}{R_2} \right))</td>
</tr>
<tr>
<td>Zwierciadło kuliste</td>
<td>(f = \frac{R}{2})</td>
</tr>
</tbody>
</table>

Fizyka współczesna

<table>
<thead>
<tr>
<th>Równoważność masy-energii</th>
<th>(E = m \cdot c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energia fotonu</td>
<td>(E = h \cdot f = \frac{h \cdot c}{\lambda})</td>
</tr>
<tr>
<td>Zjawisko fotoelektryczne</td>
<td>(h \cdot f = W + E_{k_{max}})</td>
</tr>
<tr>
<td>Długość fali de Broglie’a</td>
<td>(\lambda = \frac{h}{m \cdot v})</td>
</tr>
<tr>
<td>Poziomy energetyczne atomu wodoru</td>
<td>(E_n = -\frac{13.6 \text{ eV}}{n^2})</td>
</tr>
<tr>
<td>Prawo Hubble’a</td>
<td>(v = H \cdot r)</td>
</tr>
</tbody>
</table>

Termodynamika

<table>
<thead>
<tr>
<th>Gęstość</th>
<th>(\rho = \frac{m}{V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciśnienie</td>
<td>(p = \frac{F}{S})</td>
</tr>
<tr>
<td>Zmiana ciśnienia hydrostatycznego</td>
<td>(\Delta p = \rho \cdot g \cdot \Delta h)</td>
</tr>
<tr>
<td>I zasada termodynamiki</td>
<td>(\Delta U = Q + W)</td>
</tr>
<tr>
<td>Praca siły parcia</td>
<td>(W = -p \cdot \Delta V)</td>
</tr>
<tr>
<td>Ciepło właściwe</td>
<td>(c_w = \frac{Q}{m \cdot \Delta T})</td>
</tr>
<tr>
<td>Ciepło molowe</td>
<td>(C = \frac{Q}{n \cdot \Delta T})</td>
</tr>
<tr>
<td>Ciepło przemiany fazowej</td>
<td>(Q = m \cdot L)</td>
</tr>
<tr>
<td>Średnia energia kinetyczna ruchu postępowego cząsteczek</td>
<td>(E_{kr} = \frac{3}{2} k_B \cdot T)</td>
</tr>
<tr>
<td>Równanie stanu gazu doskonalego (Clapeyrona)</td>
<td>(p \cdot V = n \cdot R \cdot T)</td>
</tr>
<tr>
<td>Ciężka molowa gazu doskonalego</td>
<td>(C_p = C_v + R)</td>
</tr>
<tr>
<td>Sprawność silnika cieplnego</td>
<td>(\eta = \frac{W}{Q} = \frac{Q_1 - Q_2}{Q_2})</td>
</tr>
</tbody>
</table>

Pole magnetyczne

Siła Lorentza	\(F = q \cdot v \cdot B \cdot \sin \alpha (v; B) \)
Siła elektrodynamiczna	\(F = I \cdot l \cdot B \cdot \sin \alpha (l; B) \)
Pole przewodnika prostoliniowego	\(B = \frac{\mu_0 I}{2 \pi r} \)
Pole pętli (w jej środku)	\(B = \frac{\mu_0 I}{2 r} \)
Pole długiego solenoidu (zwojnicy)	\(B = \mu_0 \mu_r n \cdot I \)
Strumień pola magnetycznego	\(\Phi = B \cdot S \cdot \cos \alpha (B; S) \)
SEM indukcji	\(\mathcal{E} = -\frac{\Delta \Phi}{\Delta t} \)
SEM samoindukcji	\(\mathcal{E} = -L \frac{\Delta I}{\Delta t} \)
SEM prądnicy	\(\mathcal{E} = n \cdot B \cdot S \cdot \omega \cdot \sin (\omega t + \varphi) \)
Wartości skuteczne prądu przemiennego	\(U_{sk} = \frac{U_{max}}{\sqrt{2}}; I_{sk} = I_{max} \frac{I_{max}}{\sqrt{2}} \)
Transformator	\(\frac{U_1}{U_2} = \frac{n_{1}}{n_{2}} = \frac{I_{2}}{I_{1}} \)
Elektrostatyka

prawo Coulomba	$F = k \frac{q_1 q_2}{r^2}$; $k = \frac{1}{4\pi \varepsilon_0}$
natężenie pola	$\vec{E} = \frac{\vec{F}}{q}$
napięcie	$U = \frac{W}{q}$
pole jednorodne	$U = E \cdot d$
pojemność (pojemność kondensatora płaskiego)	$C = \frac{Q}{U} \left(C = \varepsilon_r \varepsilon_0 \cdot \frac{S}{d} \right)$
energia kondensatora	$W = \frac{1}{2} Q \cdot U = \frac{1}{2} C \cdot U^2$

Prąd elektryczny

natężenie prądu	$I = \frac{\Delta Q}{\Delta t}$
moc prądu	$P = U \cdot I$
opór przewodnika	$R = \rho \cdot \frac{I}{S}$
prawo Ohma	$I = \frac{U}{R}$
napięcie ogniwa	$U = \mathcal{E} - I \cdot R_w$

Prócz prądów można zdefiniować funktiony:

Logarytmem \(\log_c \) dodatniej liczby \(c \) przy podstawie \(a \left(a > 0 \text{ i } a \neq 1 \right) \) nazywamy wykładnik \(b \) potęgi, do której należy podnieść podstawę \(a \), aby otrzymać liczbę \(c \):

$$ \log_a c = b \quad \text{wtedy i tylko wtedy, gdy} \quad a^b = c $$

log \(x \) oraz \(\log x \) oznacza \(\log_{10} x \)

Dla \(x > 0, y > 0 \) i \(a > 0 \text{ i } a \neq 1 \) prawdziwa jest równość:

$$ \log_a (x \cdot y) = \log_a x + \log_a y $$

Przedrostki

<table>
<thead>
<tr>
<th>mnożnik</th>
<th>(10^{12})</th>
<th>(10^9)</th>
<th>(10^6)</th>
<th>(10^3)</th>
<th>(10^2)</th>
<th>(10^1)</th>
<th>(10^{-1})</th>
<th>(10^{-2})</th>
<th>(10^{-3})</th>
<th>(10^{-6})</th>
<th>(10^{-9})</th>
<th>(10^{-12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>przedrostek</td>
<td>tera</td>
<td>giga</td>
<td>mega</td>
<td>kilo</td>
<td>hekto</td>
<td>deka</td>
<td>decy</td>
<td>centy</td>
<td>mili</td>
<td>mikro</td>
<td>nano</td>
<td>piko</td>
</tr>
<tr>
<td>oznaczenie</td>
<td>T</td>
<td>G</td>
<td>M</td>
<td>k</td>
<td>h</td>
<td>da</td>
<td>d</td>
<td>c</td>
<td>m</td>
<td>µ</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>Stale i jednostki fizyczne i chemiczne</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>przyspieszenie ziemskie</td>
<td>$g = 9,81 \frac{m}{s^2}$</td>
<td></td>
</tr>
<tr>
<td>przenikalność magnetyczna próżni</td>
<td>$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$</td>
<td></td>
</tr>
<tr>
<td>masa Ziemi</td>
<td>$M_Z = 5,98 \cdot 10^{24} \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>prędkość światła w próżni</td>
<td>$c = 3,00 \cdot 10^8 \frac{m}{s}$</td>
<td></td>
</tr>
<tr>
<td>średni promień Ziemi</td>
<td>$R_Z = 6370 \text{ km}$</td>
<td></td>
</tr>
<tr>
<td>stała Plancka</td>
<td></td>
</tr>
<tr>
<td>stała grawitacji</td>
<td>$G = 6,67 \cdot 10^{-11} \frac{N\cdot m^2}{kg^2}$</td>
<td></td>
</tr>
<tr>
<td>ładunek elementarny</td>
<td>$e = 1,60 \cdot 10^{-19} \text{ C}$</td>
<td></td>
</tr>
<tr>
<td>liczba Avogadra</td>
<td>$N_A = 6,02 \cdot 10^{23} \frac{1}{\text{ mol}}$</td>
<td></td>
</tr>
<tr>
<td>masa elektronu</td>
<td>$m = 9,110 \cdot 10^{-31} \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>objętość 1 mola gazu doskonałego w warunkach normalnych</td>
<td></td>
</tr>
<tr>
<td>$t = 0 \degree \text{C oraz } p = 1013,25 \text{hPa}$</td>
<td></td>
</tr>
<tr>
<td>$V = 22,41 \frac{\text{dm}^3}{\text{mol}}$</td>
<td>masa protonu</td>
<td></td>
</tr>
<tr>
<td>masa neutronu</td>
<td>$m = 1,673 \cdot 10^{-27} \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>masa neutronu</td>
<td>$m = 1,675 \cdot 10^{-27} \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>uniwersalna stała gazowa</td>
<td>$R = 8,31 \frac{\text{J}}{\text{mol}\cdot \text{K}}$</td>
<td></td>
</tr>
<tr>
<td>jednostka masy atomowej</td>
<td>$1 \text{ u} = 1,661 \cdot 10^{-27} \text{ kg}$</td>
<td></td>
</tr>
<tr>
<td>stała Boltzmann</td>
<td>$k_B = 1,38 \cdot 10^{-23} \frac{\text{J}}{\text{K}}$</td>
<td></td>
</tr>
<tr>
<td>elektronowolt</td>
<td>$1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}$</td>
<td></td>
</tr>
<tr>
<td>przenikalność elektryczna próżni</td>
<td>$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\text{C}^2}{\text{N}\cdot\text{m}^2}$</td>
<td></td>
</tr>
<tr>
<td>stała Hubble’a</td>
<td>$H \approx 75 \frac{\text{km}}{\text{s}\cdot\text{Mpc}}$</td>
<td></td>
</tr>
<tr>
<td>stała elektryczna</td>
<td>$k = \frac{1}{4\pi \varepsilon_0} = 8,99 \cdot 10^9 \frac{\text{N}\cdot\text{m}^2}{\text{C}^2}$</td>
<td></td>
</tr>
<tr>
<td>parsek</td>
<td>$1 \text{ pc} = 3,09 \cdot 10^{16} \text{ m}$</td>
<td></td>
</tr>
</tbody>
</table>
\[\sin \alpha = \frac{a}{c}, \quad \cos \alpha = \frac{b}{c}, \quad \tan \alpha = \frac{c}{a}, \quad \sin^2 \alpha + \cos^2 \alpha = 1\]

\[\cos(90^\circ - \alpha) = \sin \alpha, \quad \sin(90^\circ - \alpha) = \cos \alpha\]

\[\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta, \quad \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\]

\[\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta, \quad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta\]

\[\sin 2\alpha = 2 \sin \alpha \cos \alpha\]